发布人:河南熔克电气制造有限公司    发布日期:2019-03-20 11:30:47     点击:7041
晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
晶闸管的工作条件:
1. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性.
2. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用
3. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。
4. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态.
在中频炉中整流侧关断时间采用KP-60微秒以内,逆变侧关短时间采用KK-30微秒以内这也是KP管与KK管的主要区别 晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
从晶闸管的内部分析工作过程: 晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2 当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。
因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。设PNP管和NPN 管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0, 晶闸管的阳极电流等于两管的集电极电流和漏电流的总和: Ia=Ic1 Ic2 Ic0 或Ia=a1Ia a2Ik Ic0 若门极电流为Ig,则晶闸管阴极电流为Ik=Ia Ig 从而可以得出晶闸管阳极电流为:I=(Ic0 Iga2)/(1-(a1 a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。
当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1 a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。
这样强烈的正反馈过程迅速进行。
当a1和a2随发射极电流增加而(a1 a2)≈1时,式(1—1)中的分母1-(a1 a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。式(1—1)中,在晶闸管导通后,1-(a1 a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。
晶闸管在导通后,门极已失去作用。在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1 a2)≈0时,晶闸管恢复阻断状态。
发布日期:2019-03-20 11:30:47
发布人:河南熔克电气制造有限公司     点击:7043
晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
晶闸管的工作条件:
1. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性.
2. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用
3. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。
4. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态.
在中频炉中整流侧关断时间采用KP-60微秒以内,逆变侧关短时间采用KK-30微秒以内这也是KP管与KK管的主要区别 晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
从晶闸管的内部分析工作过程: 晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2 当晶闸管承受正向阳极电压时,为使晶闸管导铜,必须使承受反向电压的PN结J2失去阻挡作用。图中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。
因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。设PNP管和NPN 管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0, 晶闸管的阳极电流等于两管的集电极电流和漏电流的总和: Ia=Ic1 Ic2 Ic0 或Ia=a1Ia a2Ik Ic0 若门极电流为Ig,则晶闸管阴极电流为Ik=Ia Ig 从而可以得出晶闸管阳极电流为:I=(Ic0 Iga2)/(1-(a1 a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。
当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1 a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。
这样强烈的正反馈过程迅速进行。
当a1和a2随发射极电流增加而(a1 a2)≈1时,式(1—1)中的分母1-(a1 a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。式(1—1)中,在晶闸管导通后,1-(a1 a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。
晶闸管在导通后,门极已失去作用。在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1 a2)≈0时,晶闸管恢复阻断状态。